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Fig. 1. Our physics-based method resolves the collisions in highly-dense 3D crowds, enabling the synthesis of 3D crowd animations where characters
realistically interact and push each other, as shown in this indoor concert scene. Through a rigorous perceptual study, we demonstrate that resolving
collisions is needed to generate 3D dense crowds that move in a natural and convincing way, while traditional animation methods do not model or correct
such contacts between 3D characters.

We propose a novel contact-aware method to synthesize highly-dense 3D

crowds of animated characters. Existing methods animate crowds by, first,
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computing the 2D global motion approximating subjects as 2D particles

and, then, introducing individual character motions without considering

their surroundings. This creates the illusion of a 3D crowd, but, with den-

sity, characters frequently intersect each other since character-to-character

contact is not modeled. We tackle this issue and propose a general method

that considers any crowd animation and resolves existing residual colli-

sions. To this end, we take a physics-based approach to model contacts

between articulated characters. This enables the real-time synthesis of 3D

high-density crowds with dozens of individuals that do not intersect each

other, producing an unprecedented level of physical correctness in anima-

tions. Under the hood, we model each individual using a parametric human

body incorporating a set of 3D proxies to approximate their volume. We

then build a large system of articulated rigid bodies, and use an efficient

physics-based approach to solve for individual body poses that do not col-

lide with each other while maintaining the overall motion of the crowd.

We first validate our approach objectively and quantitatively. We then ex-

plore relations between physical correctness and perceived realism based

on an extensive user study that evaluates the relevance of solving contacts

in dense crowds. Results demonstrate that our approach outperforms ex-

isting methods for crowd animation in terms of geometric accuracy and

overall realism.

CCS Concepts: • Computing methodologies → Motion processing;

Additional Key Words and Phrases: Crowd animation, physics-based ani-

mation
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1 Introduction

A realistic crowd animation showing, for instance, many charac-

ters in a public place, a street, a stadium, or a concert, is achieved

in practice by combining several techniques, each of which takes

charge of a part of the animation, in a layered fashion. In this way,

the animation of a crowd can be decomposed into computing its

global features (i.e., positions and trajectories of characters rela-

tive to the environment) [Guy et al. 2010; Van den Berg et al. 2008]

and into the detailed animation of the body pose of each character

[Maïm et al. 2009; Pelechano et al. 2011; Sung et al. 2005] (gener-

ated independently afterward, but driven by the evolution of global

positions as well as some full-body motion assets).

Even though the field is recent, the animation process divided

into successive passes is mainstream [Gustafson et al. 2016;

Kanyuk 2016], independently of the application (e.g., video games

or visual effects for movies), and it will probably remain as this

for another decade because it is a highly-efficient strategy to

handle both the algorithmic and practical complexity of crowd

animation. Nevertheless, as it was raised by Hoyet et al. [2016],

even if such a decomposition simplifies the animation process,

it also generates artifacts: because the body animation of crowd

characters is computed separately and independently from the

global motion features, some of the interactions between neigh-

bors are neglected. In other words, there is a mismatch between

each character’s body motion and their immediate surroundings.

Hoyet et al. demonstrated the benefit of reintroducing motion

details (in their work, secondary shoulder motions) to give

the illusion that physical interactions are simulated between

characters where they are not. The value of reintroducing motion

details—that would result from interactions—was proved, but no

general principle was proposed to reintroduce them.

Our objective is to explore a more general solution to improve

the quality of crowd animations by solving motion artifacts that

result from the lack of interactions between crowd characters at

the body animation stage. Like in previous work, we consider

a two-step crowd animation process where global features

(characters’ positions for a stationary crowd, or their trajectories

for non-stationary ones) are first computed, followed by a full

body animation pass using a motion capture-based technique. We

consider as well the residual collisions that can result from this

process which are known to be visually striking, especially at close

distances [Kulpa et al. 2011]. Note that our approach works as a

final additional animation layer and is, therefore, fully compatible

with any traditional animation pipeline. Thus, our method consid-

ers a given animation of crowd characters, detects the presence

of collisions (i.e., geometry overlaps and inter-penetrations), and

solves them by editing the characters’ motion. Furthermore, our

approach is based on physical simulation, computing, and apply-

ing collision repulsion forces based on the configuration of the

limbs and colliding bodies. This way, the motion is progressively

edited so as to reach a negligible interpenetration volume between

characters, while realistic surface contacts between them can

remain. Because our approach works in a frame-by-frame fashion

and can be both applied to an existing animation or included as

a final step in an online animation loop, we can consider online

(games, virtual reality) or offline (movies) applications.

In this work, we also set the objective of evaluating the effect of

our technique on the overall crowd animation quality. This is cru-

cial because we are facing a potentially contradictory objective. On

the one hand, our technique removes residual collisions that are

clearly physically wrong and, therefore, reintroduces to the crowd

a consistency that has been lost on the way. On the other hand,

correcting residual collisions requires editing character motions,

which might alter visual quality by decreasing overall motion vi-

sual plausibility. Thus, as previously done to evaluate the visual

quality of crowd animations [Ennis et al. 2010; Kulpa et al. 2011;

McDonnell et al. 2008], we propose a perceptual evaluation of our

method applied to stationary and non-stationary crowds, chang-

ing densities and various points of view. Changing crowd density

directly plays on the required amount of motion editing to solve

collisions, enabling us to explore the tradeoff set by our method

between physical consistency and motion alteration.

Our contribution is thus twofold:

— We propose a new physically-based method to solve the

residual collisions with inter-penetrations between virtual

character bodies that remain in a given generated crowd an-

imation. The method has real-time capabilities and is agnos-

tic to the used crowd animation pipeline.

— We propose a perceptual study to evaluate the range of situa-

tions where this method is efficient. Our results suggest that

crowd animations corrected with our method are perceived

overall as being more realistic, with more natural contacts,

and with characters more aware of their surroundings.

2 Related Work

2.1 Crowd Simulation

Crowd simulation aims at reproducing the behavior of real crowds

[Kapadia et al. 2016; Thalmann and Musse 2012]. In its applications

to the graphics domain, for example for visual effects in cinema

[Yang et al. 2020] or for Virtual Reality [Xu et al. 2014], the crowd

is represented by detailed 3D agents, the limbs of which are articu-

lated. However, to cope with the complexity raised by the synthe-

sis of so many articular trajectories, crowd animation techniques

decompose the problem into several sub-parts and, with few excep-

tions [Narang et al. 2018; Singh et al. 2011; Stüvel et al. 2016; Yao

et al. 2023]. The algorithms for navigation or global positioning

of the agents in the environment are thus decoupled from those

used for character body animation [Lemonari et al. 2022; van Toll

and Pettré 2021]. The former are based on simplistic 2D proxy ge-

ometries (e.g., discs) whilst the latter move poly-articulated bod-

ies. Whatever the exact combination of navigation and animation

techniques used in a crowd animation pipeline, this decoupling

generates visual artifacts: the resulting animations do not reflect

the effect of physical interactions between neighbor characters,

and collisions can persist in the final result. It was shown that,

when large crowds are displayed, spectators barely spot residual
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collisions [Daniel et al. 2021; Kulpa et al. 2011]. Nevertheless, cor-

recting them by introducing secondary motions that capture the

effect of physical interactions is beneficial to the overall realism of

the crowd animation [Hoyet et al. 2016].

Since the visual realism of crowd animation is a common

objective, but the respective contribution of each component of

a crowd animation pipeline is difficult to disentangle, perceptual

studies have often been used in the past to better compose

this pipeline or tune some parameters. Such studies include

for example exploring the effects of motion variety [Adili et al.

2021; McDonnell et al. 2008], LOD clothing [McDonnell et al.

2006], character responsiveness [Kyriakou and Chrysanthou

2018], emotion expression [Carretero et al. 2014], gaze animation

[Narang et al. 2016], visual vs. auditory channel dominance [Ennis

et al. 2010], and so on. Closer to the goal of this article, Kulpa

et al. [2011] investigated the perception of collisions in crowd

animations. They showed that collisions at a distance from the

point of view are not detected, but also that close collisions are

detected and need to be solved, which justifies our goal.

We should also mention the various crowd animation software

packages dedicated to visual effects in film (e.g., Golaem [Gol 2024],

Miarmy [Mia 2024], or Massive [Mas 2024]). While the goal of

achieving good-quality visual results with limited computational

time is common to the work mentioned above, a specific goal of the

animation pipeline is to provide the user with the means to direct

and edit crowd animations. In these software packages, physical

animation is used to fully animate ragdoll characters (typically in

explosion scenarios) rather than to edit an existing animation.

In conclusion, the separation between navigation layers and

animation layers is still a reality in crowd simulation and ani-

mation, especially for real-time applications like virtual reality.

In the same spirit as Hoyet et al. [2016], we propose a method

to solve some resulting artifacts, but unlike previous work

based on pre-recorded secondary motions, we propose a general

physically-based method to achieve this goal. Moreover, we

evaluate our method not only objectively and quantitatively, but

also perceptually to validate that our method is also beneficial for

the overall crowd animation realism.

2.2 Physics-Based Modelling of Human Contact

Physics-based character animation methods naturally incorporate

contacts into their formulation, which potentially enables realis-

tic interaction between kinematic characters and the environment.

Early works [Fang and Pollard 2003; Liu and Popović 2002; Witkin

and Kass 1988] use space-time optimization to compute a motion

that satisfies physical constraints, but they are mostly limited to

foot-ground contact. Forward dynamics methods compute joint

torques and apply them to synthesize realistic movements [Coros

et al. 2010; Hodgins et al. 1995; Yin et al. 2007], but they typi-

cally struggle with scenarios with multiple contacts. Adding ref-

erence trajectories into optimization-based methods helps [Mac-

chietto et al. 2009; Muico et al. 2009], but it is difficult to general-

ize to unseen contact states. For better generalization, guided mo-

tions and randomized sampling of the controller [Liu et al. 2010;

Sok et al. 2007] have been combined. More recently, many physics-

based character animation works that use modern learning strate-

gies have been proposed [Liu and Hodgins 2018; Peng et al. 2018;

Starke et al. 2020] These methods combine physics and techniques

such as reinforcement learning to train motion controllers that

can interact with the environment. We also use physics in our ap-

proach but, while most of the literature in physics-based charac-

ter animation aims at synthesizing the kinematic motion of a single

character, we focus on solving multi-character collisions caused by

the body volume overlap.
Another trend of physics-based methods closely related to us is

the modeling of 3D volumetric characters as deformable objects

[Capell et al. 2002; Galoppo et al. 2007]. These works typically

use skinning-based reduced simulation methods [Gilles et al. 2011;

Wang et al. 2015] to define subspace models for deformable ob-

jects, but fast and accurate contact is difficult to incorporate [Teng

et al. 2015]. Closer to ours are the methods that propose volumetric

models for parametric humans [Ramon et al. 2023] such as SMPL

[Loper et al. 2015], which open the door to resolving collisions with

external objects. For example, Kim et al. [2017] first compute a vol-

umetric discretization of the SMPL template mesh, and then de-

fine and parameterize a mechanical model by fitting the deformed

volumetric template to high-quality 4D scans. Similarly, Romero

et al. [2020] enrich the pose-dependent static deformations from

SMPL by using a volumetric deformable model that is also fitted

into 4D scans. Additionally, they define an anisotropic nonlinear

material that accurately represents skin dynamics to reproduce de-

formations due to external forces. Tapia et al. [2021] also propose

a volumetric SMPL model by combining global data-driven static

deformations with an efficient and local skinning-based subspace

model, which enables real-time performance. Despite the impres-

sive realism of contact deformations produced by these methods,

the underlying physics-based models remain very computationally

expensive and do not scale to dozens of individuals.

Very recently, data-driven methods have shown promising re-

sults to speed up the computation of deformations by analyz-

ing contacts in physics-based methods. For example, Holden

et al. [2019] learn the dynamic update of subspace deformable

objects under external contact, even though their results are

mostly limited to global deformations. Other learning-based

works [Romero et al. 2022, 2021] enrich a model reduction strat-

egy with a data-driven method to produce contact-driven defor-

mations. Even if these methods succeed to produce detailed defor-

mations, they require an exhaustive sampling of the subspace and

are trained on a collider-specific dataset. Additionally, despite the

speed-up provided by the machine learning component, they do

not scale up to dozens of characters. In contrast, we opt for coarsely

approximating the character volume, which enables real-time col-

lision resolution for highly dense crowds.

Lastly, our work is also related to the more general methods

for collision detection for deformable objects [Lan et al. 2020].

However, we argue that (expensive) nonrigid deformation is not

needed to model accurate contacts in crowds and, therefore, opt

for a model based on fast and responsive simulation of skeletal

dynamics.

3 Resolving Collisions in Dense Crowds

Our objective is to adjust the individual pose of many characters

in a dense crowd by solving the collisions that exist between their
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volumes while maintaining the overall crowd motion as faithfully

as possible. To this end, we first define our underlying paramet-

ric human model (Section 3.1), which we then use to formulate a

physics-based dynamic human model (Section 3.2) that is guided

by motion capture data and the global crowd motion (Section 3.3).

Finally, we show how we incorporate collision handling into our

formulation by adding a set of parametric volumetric primitives to

approximate our human model (Section 3.4).

3.1 Parametric Human Model

Starting from a human crowd consisting of a set of kinematic skele-

tons and their corresponding pose and global position over time,

we first define a body representation that enables the computation

of collisions between characters. To this end, we leverage the vast

literature on 3D body models [Feng et al. 2015; Joo et al. 2018; Loper

et al. 2015] that deform a rigged parametric human template

M(β, θ) =W (T (β, θ), J (β), θ,W), (1)

whereW is a skinning function (e.g., linear blend skinning or dual

quaternion) with skinning weights W, J (β) ∈ R3×24 the joint po-

sitions, and θ the pose parameters of the kinematic skeleton that

deforms an unposed parametric body mesh T (β, θ). More specif-

ically, we use the nowadays standard SMPL model [Loper et al.

2015], which defines the unposed body mesh as

T (β, θ) = T + Bs(β) + Bp(θ), (2)

where T ∈ RNB×3 is a body mesh template with NB vertices that

is deformed using two blendshapes that output per-vertex 3D dis-

placements: Bs(β) ∈ RNB×3 models deformations to change the

body shape; and Bp(θ) ∈ RNB×3 models deformations to correct

skinning artifacts.

Several previous works have extended SMPL’s kinematic repre-

sentation of the body surface to support physics-based soft-tissue

deformation [Kim et al. 2017; Romero et al. 2020; Tapia et al. 2021].

However, at the target scale of our work, the relevance of skele-

tal response to collisions is far more notorious, and soft-tissue

modeling does not scale well to the dozens of individuals required

for dense crowds. Therefore, we favor the fast, responsive simula-

tion of skeletal dynamics, and defer soft-tissue modeling to future

work.

3.2 Physics-Based 3D Humans

To endow the above parametric human model with physics-based

motion, we compute the pose θ as the result of a physics-based sim-

ulation. Specifically, we formulate equations of motion that include

the following mechanical terms: inertia, gravity, joint constraints,

collisions, and a control term to follow the input body animation.

We formulate the motion of the articulated skeleton as a rigid

body simulation with soft constraints to model joints. We denote

as q the aggregate state of all individuals in a crowd, which in-

cludes the degrees of freedom of all rigid bones in each body. Given

all mechanical terms for all bodies, we integrate the equations of

motion using the popular optimization formulation of backward

Euler [Gast et al. 2015; Kane et al. 2000]:

q = arg minEinertia + Egravity + Ejoints + Ecollisions + Econtrol. (3)

After each time-step solve, we project the rigid-body state q to each

body’s parametric pose θ, and we evaluate the parametric human

model in Equation (1) to obtain the posed body surfaces.

In our model, we use standard formulations for inertia, gravity,

and joints on rigid bones [Ferguson et al. 2021], and we discuss

collisions and control below. We solve the optimization in Equa-

tion (3) using Newton’s method with analytical computation of

gradients and Hessians. Just one Newton iteration per time step

worked well for our dynamic simulations. Each Newton iteration

yields a sparse linear system of size 6×24×N , with N the number

of individuals in the crowd, 24 the number of bones per body, and

6 the number of degrees of freedom per bone. We solve this linear

system using a conjugate gradient.

3.3 Coupling to Full-body Animations

The skeletal motion of individuals is dictated by pre-recorded full-

body animations, and we want bodies to respond naturally to colli-

sions while still following the input animation. Animation control

is a whole research topic in its own [Liu and Hodgins 2017; Peng

et al. 2018], and we resort to a PD controller as it sufficed for our

problem at hand. Our PD controller couples each body to its cor-

responding skeletal animation input in the following way. For the

body root, we couple absolute translation and rotation. For the rest

of the body, on the other hand, we couple relative joint rotations.

Given a joint with current body and joint rotations R and R̂, re-

spectively, and previous-step rotations Rold and R̂old, we define its

PD control term (i.e., spring and damping) as

Econtrol(R) =
1

2
k
�
�R − R̂

�
�
2
F
+

1

2

d

h2

�
�R − Rold − R̂ + R̂old

�
�
2
F
, (4)

where k and d are, respectively, spring and damping coefficients,

h is the time step, and |·|F denotes the Frobenius norm. This joint

control term penalizes deviations in joint rotations and joint ve-

locities between the physics-based simulation and the animation

input. As we show later in Figure 4, we found it was important to

damp deviations in joint velocities, not absolute joint velocities, to

ensure that bodies recover their trajectory smoothly after blocking

collisions.

For the pelvis and the feet, we use higher spring and damping co-

efficients to ensure stronger alignment of the trunk with the skele-

tal animation, as well as to avoid foot skate.

3.4 Modeling Physics-Based Collisions

Our physics-based 3D human simulation considers four types of

collisions: body-ground, body-environment, inter-body, and intra-

body collisions. An exact solution to collisions would require eval-

uating penetrations with respect to the exact surface model from

Equation (1) but pose blendshapes and skinning complicate this

task. Instead, we propose to use a set of parametric geometric prim-

itives to efficiently approximate the SMPL body volume and re-

solve all collision types.

To this end, for each bone bj of the SMPL kinematic skeleton, we

define a capsule kj computed as the intersection of two spheres of

radius r j and one cylinder of radius r j and length lj . These capsule

parameters are computed as a function of the body shape β: lj is

set to match the length of the bone bj given the joint positions

J (β), and r j is optimized such that the volume of the capsule kj

ACM Trans. Graph., Vol. 43, No. 5, Article 163. Publication date: September 2024.



Resolving Collisions in Dense 3D Crowd Animations • 163:5

Fig. 2. Three example poses of our underlying 3D body representation.
We enrich the SMPL [Loper et al. 2015] parametric human model (in
solid brown) with a set of parametric volumetric 3D primitives (in semi-
transparent colors), which enables fast and highly efficient evaluation
of collisions.

is a best-fit to the body mesh T (β, θ) vertices influenced by bone

bj . Capsules are transformed following the bone transformation

given by pose parameter θ at each frame. Our parametric human

model is illustrated in Figure 2, depicting the original surface SMPL

mesh (in solid brown) and our volumetric primitives on top (in

semi-transparent). The use of a set of simple geometric proxies

significantly simplifies the computation of collisions, while closely

approximating the true volume of the character.

We execute collision detection for all four collision types as fol-

lows. For each body, we build an AABB after each simulation time

step. For body-ground collision, we simply test all capsules against

the ground plane and compute the penetration depth for colliding

capsules. For body-environment collisions, we point-sample static

environment objects, build a static AABB-tree, and cull collisions

against body AABBs. For colliding points, we compute the pene-

tration depth with respect to the collision capsule. For inter-body

collisions, we first test body-level AABBs to cull body pairs. Fi-

nally, for intra-body collisions, we discard adjacent capsule pairs,

which we identify as those that collide in T-pose. For each po-

tentially colliding capsule-capsule pair (either inter-body or intra-

body), we first execute a faster sphere-sphere culling test, and we

compute capsule-capsule interpenetration only for those pairs that

survive all culling tests. Then, we formulate for each computed

collision a penalty potential based on the penetration depth δ as

Ecollisions(δ) =
1
2 kδ δ2.

4 Evaluation

Our evaluation explores two types of crowd animations, walking

and dancing, as well as various aspects of the method. We first

describe how we generated the different types of crowd exam-

ples (Section 4.1), which were then used for our quantitative (Sec-

tion 4.2) and qualitative (Section 4.3) evaluations, as well as stimuli

for our user study (Section 4.4).

4.1 Crowd Animations

For our evaluations, we focus on two types of crowd animations:

stationary crowds where characters move but their global posi-

tion is fixed (e.g., dancing crowds), and non-stationary crowds

where characters perform navigation (e.g., walking crowds). In

both cases, our approach builds on top of a standard animation

Fig. 3. Quantitative evaluation of the mean per-character volume over-
lap in animations of different crowd densities, for both stationary (i.e.,
dancing) and non-stationary (i.e., walking) scenes. Our approach resolves
collisions even in highly dense crowds, while the baseline method based
on state-of-the-art crowd simulation results in 3D characters that signifi-
cantly intersect each other. See Figure 5 for qualitative visualization of this
analysis.

pipeline decoupling the simulation (computing the 2D global po-

sition or trajectory of characters) and animation (computing full

body motions) of the characters in the crowds.

First, the original position of the N characters in each crowd ani-

mation is computed according to a desired density using a Poisson

Disk Sampling algorithm, to ensure regular spacing between char-

acters. In the case of non-stationary scenarios (e.g., walking), any

2D simulator can then be used to compute the global movement

of the crowd, which is commonly done by solving an optimization

problem where each agent is approximated as a 2D particle, such

as PLE [Guy et al. 2010] or RVO [Van den Berg et al. 2008]. For the

non-stationary scenarios used in this article, we use the RVO algo-

rithm provided by van Toll et al. [2020] to generate the 2D crowd

trajectories.

Then, we created full-body animated characters using SMPL and

animations from the Mixamo database [mix 2023]. More specifi-

cally, we selected 15 animations that evoked dancing characters

for the stationary crowds, and four walking animations for the

non-stationary crowds with different walking speeds which we

combined in a controllable blend tree in Unity. Each animation was

manually cut and looped, to ensure seamless continuous anima-

tion. These animations were displayed on N unique virtual charac-

ters created using SMPL models described in Section 3.1. To ensure

a realistic distribution of body shapes, β parameters were selected

randomly following a Gaussian distribution that matched men and

women height distributions around the world, obtaining N unique

bodies, half of them belonging to each gender. Regarding their ap-

pearance, 65 female and 57 male photorealistic synthetic textures

were used, which cover a wide diversity of races and ethnicities.

The animations created in this manner served for the Baseline

examples, i.e., they correspond to crowd animations created using

standard state-of-the-art methods. These crowd animations were

then processed using the approach described in Sections 3.2–3.4,

ACM Trans. Graph., Vol. 43, No. 5, Article 163. Publication date: September 2024.



163:6 • G. Gomez-Nogales et al.

enabling the synthesis of collision-aware realistic dense 3D crowds

(Ours), and used for the quantitative and qualitative evaluations,

and as stimuli for the perceptual study presented in the following

sections.

4.2 Quantitative Evaluation

To quantitatively validate the capability of resolving collisions of

our approach, we evaluate the (undesired) per-character mean vol-

umetric overlap in a set of 3D crowd animations of different char-

acter density levels. Specifically, using the strategy described in

Section 4.1, we generate stationary animations (e.g., dancing) of

20, 30, 40, 50, and 60 characters on an area of 9 m2, which results

in crowded animations ranging from 2.2 persons/m2 (i.e., a density

level common in a crowded street) to more than 6 persons per m2.

Note that we consider it to be a relevant upper-density limit, since

beyond this density level risk of crowd disasters becomes high and

other kinds of crowd dynamics enter into play [Still 2000]. Analo-

gously, to evaluate non-stationary crowds, we also generated walk-

ing animations for densities 2.2 to 6.6 persons/m2 going through a

narrow corridor.

We then compute the average per-character volume overlap in

each animation, and compare the results using our physics-based

solution to the baseline approach (Figure 3). Using the baseline ap-

proach, the overlapping volume increases dramatically, leading to

animations where most of the characters are inside others. In con-

trast, our approach is able to solve collisions even in highly-dense

scenarios and maintains a relatively low average overlapping vol-

ume despite the increase in density.

Figure 5 provides a visualization of this analysis, showing rep-

resentative frames of the generated animations for different den-

sity level and approach. Pixels corresponding to 3D points with

overlapping volumes are colored in red. It can be seen that the

baseline method based on state-of-the-art crowd simulation suf-

fers from significant 3D character-to-character collisions, even in

sparse crowds, leading to heavily entangled and colliding anima-

tions in dense crowds. In contrast, our method is able to maintain

a relatively low number of residual collisions, even in highly dense

animations.

The visual quality of the animations produced by our system de-

pends significantly on the damping parameter d from Equation (4).

If no damping is applied, the joint velocities may suffer unrealistic

changes in consecutive frames when recovering from a collision

while trying to follow the target animation. To quantitatively eval-

uate the effect of the damping parameter d , Figure 4 shows the

global position of a character that collides with another one, for a

range of values d . We demonstrate that with a damping parame-

ter d = 0.006 the character smoothly recovers from the collision,

closely matching the target animation.

We also quantitatively evaluate the runtime cost of our method.

We use a standard desktop PC with a CPU AMD Ryzen 7 2700 3.2

GHz, 32 GB of RAM, and a GPU NVIDIA GeForce GTX 1080 Ti.

Our system can handle up to 200 characters (i.e., what fits into

32 GB RAM). Since we first use an efficient body-body AABB col-

lision check, we can quickly discard all the capsule-capsule col-

lision checks (e.g., limb-level contacts) for all characters that are

not in contact. More specifically, adding our physics-based model

Fig. 4. Quantitative analysis of the damping parameter d of Equation (4).
By damping the joint velocities with a small weight (d = 0.006, in blue)
we are able to closely match the target position (in green) while recovering
from a collision that occurred at t = 3.5 seconds. If no damping is applied
or it is too high, the resulting animation is unstable (in red) or drifts too
much from the target motion (in orange and purple).

takes up to 5 ms/step in the sparse scenes (20 avatars), and up to

20 ms/step in the dense stationary scene. Hence, in the worst-case

scenario, the computational cost scales linearly with the number

of characters, but we can maintain real-time performance in all the

demos showcased in the article.

4.3 Qualitative Evaluation

To illustrate the overall quality of the crowd animations gener-

ated with our approach, we show representative frames of different

scenes. Please, see the supplementary video for animated results.

Figure 1 shows a dense animation of 60 characters in a concert

(9 m2 dance floor). Despite the challenging setup (i.e., 3D humans

can barely move in a density of 6 persons/m2 or more), our ap-

proach is capable of generating convincing results, where human

bodies do not intersect with each other while performing dancing

motions.

Our approach also generalizes to other types of motions, as can

be seen in Figure 6. Columns 1 to 3 show representative frames

of crowd animation sequences recorded specifically for illustra-

tive purposes: an actor wearing a motion capture suit was im-

mersed in a virtual crowd using a virtual reality Head Mounted

Display, and we recorded his motions while interacting with the

crowd. Despite being recorded on a real person, the animations

display numerous collisions between the user and the virtual char-

acters (top). In comparison, we show how our approach (bottom)

is able to resolve the collisions between the walking character

and the crowd, producing an animation that exhibits a natural

behavior commonly seen when people walk past each other at a

close distance, i.e., a rotation of the torso and shoulders with the

arm passing last. Importantly, this result demonstrates that despite

having access to motion-captured sequences of interacting agents,

residual collision can still appear in recorded data. Solving resid-

ual collisions produced when animating 3D virtual characters is,
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Fig. 5. Qualitative visualization of the character volume overlap in 3D
crowds. In red, pixels of the image that contain overlapping volumes (i.e.,
colliding characters). Without solving collisions (left), collisions increase
with the density of the crowd, leading to unrealistic animations where all
characters intersect each other. Our approach resolves the collisions, re-
sulting in realistic animations where characters push each other to fit into
highly dense crowds. Due to our volumetric approximation of the body,
residual collisions remain but do not affect the overall realism of the crowd.

therefore, necessary to obtain a high-level of realism in the final

animations. Similarly, Column 4 shows a frame of a walking crowd

generated using a more traditional animation pipeline (described

in Section 4.1), using the RVO algorithm [Van den Berg et al. 2008]

to compute global trajectories, combined with the previously men-

tioned walking-cycle blend tree to animate each character. It can

be seen that such a standard approach leads to many undesired

collisions. Our collision-aware method is able to resolve them, pro-

ducing realistic interactions between the 3D agents.

4.4 Perceptual Evaluation

As our approach solves residual collisions by modifying the mo-

tion of crowd characters, the resulting increase in physical real-

ism comes at the cost of altering the overall character motion. It

is therefore essential for the evaluation of our method to investi-

gate how users perceive such motion corrections. To this end, we

designed a perceptual experiment where viewers were presented

with a number of videos displaying stationary or non-stationary

animated crowds of changing density, generated with or without

applying our method. We asked them about the realism of char-

acter contacts (which is related to the presence of collisions with

overlaps in animations), the motion quality (which is related to

character motions being influenced by their neighbors), and the

overall realism of the scene. The goal of this experiment is, there-

fore, to explore the following hypotheses.

H1 Crowd animations with residual collisions corrected with

our approach will be preferred to the same animations with-

out corrections. This will be observed in terms of higher

perceived realism of contacts between characters (H1-a),

higher perceived character awareness (H1-b), and higher

overall realism (H1-c).

H2 These benefits will be higher at lower densities:

– H2-a We expect uncorrected residual collisions to be

more visible at lower densities, as there is little mutual oc-

clusion between characters, and, therefore, a higher ben-

efit from correcting them with our approach.

– H2-b Due to the relatively higher free space around char-

acters at lower densities, we expect that our method will

require little motion editing to solve residual collisions,

leading to animations corrected with our approach to be

perceived as more realistic, and more aware of their sur-

roundings.

H3 We expect that the perception of contact realism, charac-

ter awareness, and overall realism will be influenced by the

point of view of the scene. In particular, we expect that

the bird’s-eye viewpoint will ease the detection of collisions

(H3-a), and will, therefore, increase both the perceived char-

acter awareness (H3-b) and overall realism (H3-c) of crowd

animations, in contrast to eye-level or canonical viewpoints.

4.4.1 Experimental Design. To evaluate our hypotheses, we

asked participants to watch a set of 3D crowd animation videos,

populated at various levels of densities, with or without residual

contact corrections using our method, rendered from several view-

points, and displaying either stationary or non-stationary crowds.

The stationary crowd scenarios illustrated a situation resembling

a concert crowd, while non-stationary crowd scenarios displayed

characters walking in a corridor. As in our quantitative evaluation

from Section 4.2, we used 5 Density levels, from sparse to dense

levels, corresponding, respectively, to 2.22, 3.33, 4.44, 5.55, and

6.66 characters/m2 (labeled as D1 to D5). We also used 4 Viewpoint

levels: front (V1), upper-front (V2), front-side (V3), and overhead

(V4). Finally, for each condition, residual collisions were either left

untouched (Baseline) or resolved by applying our method (Ours).

The experiment was then performed in two stages. In the first

stage, we chose to demonstrate the benefits of using our method

in the simplest stationary scenario, while simultaneously explor-

ing the effects of density and viewpoint. Participants saw a total

of 40 videos, presented in random order: 5 Density (D1 to D5) ×

4 Viewpoint (V1 to V4) × 2 Method (Baseline vs. Ours). Following

the positive results of the first stage, we then ran the second stage

of the experiment to evaluate the benefits of our method on the

more complex non-stationary scenario. Based on the analysis of

the results of the first stage (described in Section 4.4.4), we, how-

ever, selected only two viewpoints for this stage (V3 and V4), as
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Fig. 6. Qualitative results of our approach for resolving collisions in dense crowds (bottom) compared to the baseline solution (top). Columns 1–3 depict
representative frames of a sequence captured with an inertial Motion Capture suit. The character wearing a blue checkered shirt represents the motion-
captured user who walked through a virtual crowd inside a virtual reality setup. Column 4 shows a representative frame of a sequence generated with a
state-of-the-art crowd simulation algorithm [Van den Berg et al. 2008], used in our perceptual study for non-stationary scenes. The baseline method (top)
produces an unrealistic animation, where characters intersect each other. In contrast, our physics-based approach (bottom) automatically adjusts the pose
of each character such that they do not collide, producing a realistic animation despite the challenging scenario.

they showed more varied results in the stationary Baseline condi-

tion. This subset eases participants to focus their attention on the

goal of the study, despite the added complexity in the videos (i.e.,

non-stationary scenes are more dynamic). In the second stage, the

same group of participants, therefore, saw a total of 20 videos, pre-

sented in random order: 5 Density (D1 to D5) × 2 Viewpoint (V3,

V4) × 2 Method (Baseline vs. Ours). See Figure 8 for samples of the

stimuli for different viewpoints, densities, and scenarios.

Participants were asked to answer the following assertions (us-

ing 6-point Likert-scales ranging from (1) “I strongly disagree” to

(6) “I fully agree”), chosen to provide information about

(i) contact realism: Q1 “Contacts made by characters between

them seem natural to me”, Q2 “Character bodies overlap, it

is not physically realistic to me”,

(ii) character awareness: Q3 “Characters seem to make contact

and sometimes push one another”, Q4 “Characters move as

if they were alone, their motion ignore neighbors”,

(iii) and overall realism: Q5 “A crowd moving like this one could

exist in the real life”, Q6 “I feel this crowd as a whole does

not move in a natural way”.

Notice that each pair of questions was formulated in a way that

there was one positive question, as well as one negative question

(as for Control questions commonly used in evaluation question-

naires). Therefore, higher scores to Q1, Q3, and Q5, and lower

scores to Q2, Q4, and Q6, mean better performance of our method.

The different crowd animations were generated using the pro-

cedure presented in Section 4.1. Each crowd animation was then

rendered as a video at a 1920 × 1080 resolution. Each video has

a duration of 20 seconds and looped until the participant had an-

swered the six following assertions about the video (see Figure 7

for a screenshot of the UI design, which was displayed on a 24-inch

display).

4.4.2 Participants. Thirty participants took part in the exper-

iment (16♂, 14♀, age: 25.8 ± 7.4), which was carried out in the

research facilities of Universidad Rey Juan Carlos (Spain). Partic-

ipants were recruited through e-mail lists among students, staff,

and the general public. All participants were naive to the purpose

Fig. 7. The GUI used for our perceptual user study. Participants were asked
to watch videos of animated dense crowds (here presenting an example of
the stationary dancing scenario) and to answer six questions for each video.
See Section 4.4.1 for a detailed description of the questions and conditions.

of the experiment, had a normal or corrected-to-normal vision, and

gave written and informed consent prior to the experiment.

4.4.3 Analysis. Questions with a similar but opposed meaning

were first grouped by pair, by inverting the answer given to neg-

ative questions so that Q̄i = 7 − Qi, i ∈ (2, 4, 6), after check-

ing the internal reliability between paired questions. Therefore,

we analyze answers about contact realism QCR = (Q1 + Q̄2)/2,

character awareness QCA = (Q3 + Q̄4)/2, and overall realism

QOR = (Q5 + Q̄6)/2.

To assess the effect of our method, density and viewpoint, on

participants’ answers, we conducted for each crowd scenario 3-

way repeated-measures ANOVAs with within-subject factors Den-

sity, Viewpoint, and Method. We set the level of significance to

α = 0.05 and used the notations * (p-value < 0.05), ** (< 0.01)

and *** (< 0.001) to highlight significant differences in the fig-

ures. Results are reported as mean ± standard deviation. We assess

the normality assumption using Q-Q plots, and sphericity using

Mauchly’s tests. Greenhouse-Geisser adjustments to the degrees

of freedom were applied when appropriate to avoid any violation

of the sphericity assumption. In case of a significant main or inter-

action effect, we performed pairwise comparisons using post-hoc

Tukey tests.
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Fig. 8. Sample frames from our user study. We show different viewpoints and scenarios (columns) for the set of densities (rows) used to generate the stimuli
for the crowd animations of our perceptual study. For each viewpoint-density-scenario combination, we generate an animation with and without solving
collisions. Here, for visualization purposes, we show representative frames of the stimuli generated with our method.

4.4.4 Results. As we found similar effects across the three

categories of questions, we present here the general results of our

perceptual evaluation based on the studied factors. Also, we focus

in this section on the principal results for the sake of clarity, while

additional details are provided in the supplemental material.

Effect of Correcting Contacts. We found a strong main effect

of Method in both scenarios for all the categories of questions:

Contact Realism (stationary: F1,29 = 154.81, p < 0.001, η2
p = 0.84;

non-stationary: F1,29 = 326.63, p < 0.001, η2
p = 0.92), Character

Awareness (stationary: F1,29 = 161.77, p < 0.001, η2
p = 0.85; non-

stationary: F1,29 = 158.07, p < 0.001, η2
p = 0.85) and Overall Real-

ism (stationary: F1,29 = 67.79, p < 0.001, η2
p = 0.70; non-stationary:

F1,29 = 168.44, p < 0.001, η2
p = 0.85).

The results show that participants considered contacts to be

inappropriate in the Baseline condition across scenarios and cate-

gories of questions. More specifically, they suggest that when our

method is applied (i) contacts between characters are perceived

to be more natural (validating H1-a), (ii) characters are perceived

as being adjusting their motion to the presence of neighbors (vali-

dating H1-b), (iii) animated crowds appeared to be overall more

realistic (validating H1-c). These results therefore completely

validate H1.

Effect of Density. For the stationary scenario, we found a main

effect of Density for all the categories of questions: Contact Re-

alism (F3.04,88.2 = 16.37, p < 0.001, η2
p = 0.36), Character Aware-

ness (F3.08,89.30 = 5.57, p < 0.001, η2
p = 0.16) and Overall Realism

(F4,116 = 4.38, p < 0.01, η2
p = 0.13). For the non-stationary scenario,

we only found a main effect of Density on Character Awareness

(F2.60,75.41 = 6.43, p < 0.001, η2
p = 0.18). These main effects are illus-

trated in the supplemental material.
More interestingly, we also observed a Density × Method

interaction in both scenarios for all the categories of ques-

tions (illustrated in Figure 9): Contact Realism (station-

ary: F4,116 = 18.00, p < 0.001, η2
p = 0.38; non-stationary:

F4,116 = 10.55, p < 0.001, η2
p = 0.27), Character Awareness

(stationary: F4,116 = 22.60, p < 0.001, η2
p = 0.43, non-stationary:

F4,116 = 4.29, p < 0.01, η2
p = 0.13) and Overall Realism (sta-

tionary: F4,116 = 15.09, p < 0.001, η2
p = 0.34; non-stationary:

F4,116 = 4.97, p < 0.001, η2
p = 0.15). For both Contact Realism and

Overall Realism, post-hoc analyses showed an effect of density

only when our method is not applied (Baseline), showing overall

that in spite of larger occlusions between characters when density

increases, participants perceive body overlaps to be increasingly

more unrealistic when they are not solved, which also negatively

impacts the overall realism of the crowd. For Character Awareness,

the results even suggest that characters were perceived to be more

aware of their surroundings at the highest densities when contacts

were corrected using our approach. These results justify applying

our method at both sparse and dense conditions since scores

about contact realism, overall realism, and character awareness

are high and are not negatively affected by the density level

with our method. This however contradicts H2-a and H2-b, as

we expected our method to be more efficient at lower densi-

ties. This completely rejects H2, while demonstrating that our
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method has a domain of validity in densities which is larger than

we expected.

Effect of Viewpoint. First, we found a main effect of Viewpoint

on Contact Realism (F3,87 = 27.08, p < 0.001, η2
p = 0.48) and

Overall Realism (F2.43,70.55 = 13.43, p < 0.001, η2
p = 0.32), but

only for the stationary scenario. More interestingly, we also ob-

served a Viewpoint × Method interaction for all the categories

of questions, again only for the stationary scenario: Contact Re-

alism (F3,87 = 13.69, p < 0.001, η2
p = 0.32), Character Awareness

(F3,87 = 15.47, p < 0.001, η2
p = 0.35) and Overall Realism (F3,87 =

9.83, p < 0.001, η2
p = 0.25). We also observed less significant View-

point × Density and Viewpoint × Density × Method interaction

effects for all the categories of questions (reported in the supple-

mentary material).

The Viewpoint × Method interaction results all reveal an un-

favorable viewpoint (front-side V3) in the Baseline condition (il-

lustrated in Figure 10-top), with lower scores on average than

with any other viewpoint condition. This was the only viewpoint

where both the whole body of foreground characters, as well as

the upper body of background characters, can be observed. In con-

trast, the overhead bird’s-eye viewpoint (V4) in the Baseline con-

dition seems to be less favorable for perceiving unnatural contacts

(which contradicts H3-a), leading to higher overall realism and

perceived character awareness (which contradicts H3-b and H3-

c). However, post-hoc analysis of the significant 3-way interac-

tion effect for Contact Realism, Character Awareness, and Over-

all Realism suggest that these results only appeared for low den-

sities (D1 and D2), as scores were not significantly different be-

tween viewpoints for the other densities (D3, D4, and D5). It also

seems important to mention that these two viewpoints were not

perceived to be significantly different in the non-stationary sce-

nario across the categories of questions. Moreover, realism and

awareness scores were relatively high across viewpoints when our

method was applied, in both stationary and non-stationary scenar-

ios. This suggests that corrected contacts are perceived to be quite

realistic across viewpoints, with positive impacts on both character

awareness and overall realism. These results therefore completely

invalidate H3.

5 Discussion

First of all, our results demonstrate that the proposed method is

efficient. In Section 4.2, we show that our approach successfully

resolves the initial collision volume, even though we still observe

residual collision volumes as the method adjusts the pose of the

characters while aiming to preserve surface contacts. Preserving

contacts has two positive effects. First, it minimizes the changes

with respect to the character’s initial pose. Second, and maybe

more interestingly, it gives the visual impression that characters

push one another, as revealed by our perceptual study in relation

to character awareness (Section 4.4.4, also cf. supp. video).

As explained in Section 3 and demonstrated in Section 4.3, colli-

sions are solved to improve the physical correctness of crowd an-

imations, nevertheless, editing the motion of each character can

introduce other artifacts (e.g., unrealistic behaviors), or other vi-

olations of physical laws (e.g., unbalanced motions). In the range

of examples we explored, especially the dancing (stationary) and

walking (non-stationary) crowds of our perceptual study, the bene-

fit of solving collisions is higher compared to potential drawbacks,

as demonstrated by the results presented in Section 4.4.4. In par-

ticular, our results validate H1, showing that correcting residual

collisions with our method leads to crowd animations perceived

to display more natural contacts, higher character awareness, as

well as perceived overall more realistic, both for stationary and

non-stationary situations.

We can identify situations where our method would obviously

fail to generate physically correct motions: for instance, if the ini-

tial collision volume is too large, or if the optimized pose parame-

ters after solving Equation (3) significantly deviates from guiding

full-body animations. Since our controller is very simple (i.e., not

designed to synthesize plausible motions), we need a good enough

initial crowd animation to produce convincing results. Note that

we could mitigate the possibly negative side effects of the method

by incorporating more terms into the physics-based animation de-

scribed in Section 3.2.

Performing the perceptual evaluation was important to demon-

strate that the benefit of solving overlaps is higher than the risk of

degrading motions in other aspects. Participants positively evalu-

ated the overall realism of close-distance videos showing crowds

of density up to 6.66 characters/m2 which was not reported in

any previous work we are aware of. Also, note that our percep-

tual study is based on pre-recorded videos for obvious practical

reasons, but let us add that, technically, the same scene could have

been generated in real-time after 3D characters model optimiza-

tion given the performance of our method.

To the best of our knowledge, our method is the first to pro-

vide a general solution to remove large residual collisions between

crowd characters. Note that our work does not aim at improving

high-level strategy for collision avoidance, but it helps to achieve

this goal because our characters react to local collisions, improv-

ing the overall realism of the crowd. The closest previous work is

probably by Hoyet et al. [2016]. Our results are in line with their

work: physically correcting motions, or re-introducing secondary

motions as in previous work, has the same effect on the perceived

behaviors of characters. They look more aware of their neighbors,

and convey signs of interactions between them through their mo-

tion, even though inter-character interactions are not considered

at the stage of animating their 3D bodies. However, compared to

the previous work [Hoyet et al. 2016], we provide a more general

solution to the long-standing problem of solving residual collisions

in animated crowds, with no limitation to a specific kind of situa-

tion or to a specific type of motions to introduce (e.g., dedicated

shoulder motions in walking crowds).

Moreover, we originally expected that our method would be

limited in the density levels that could be handled, where higher

levels of density would lead to less natural contact and overall

realism. However, our perceptual study demonstrated that it is not

the case (as H2 was rejected): neither the naturalness of contacts

nor overall realism were influenced by density when animations

were corrected using our method, while both were perceived to

be significantly higher than the same crowd animations where

collisions were not solved. Our results, therefore, demonstrate

that there is a positive value in applying our method even at
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Fig. 9. Density × Method interaction effects for participant answers about Contact Realism (left), Character Awareness (center), and Overall Realism (right),
without (Baseline) and with (Ours) correction of collisions in 3D crowd animations. Significant differences are displayed using * (p-value < 0.05), ** (< 0.01),
and *** (< 0.001). For clarity purposes, differences between Baseline and Ours conditions are not displayed as they are all significant.

Fig. 10. Stationary Crowd Experiment (Top) Viewpoint × Method interaction effects for participant answers about Contact Realism (left), Character Aware-
ness (center), and Overall Realism (right), without (Baseline) and with (Ours) correction of collisions in 3D crowd animations. While there was no such
interaction effect for the Non-stationary Crowd Experiment (Bottom), the graphs are displayed for information. Significant differences are displayed using
* (p-value < 0.05), ** (< 0.01) and *** (< 0.001). For clarity purposes, significant differences between Baseline and Ours conditions in the Stationary Crowd
Experiment are not displayed as they do not contradict the found main effect of Method.

the high-density levels we considered. Nevertheless, it seems

important to remind that the overall realism of a crowd animation

as we explored it in our perceptual study comes from different

components, e.g., body shape, initial motion, appearance, and so

on. The main limitation of our study is that we did not explore the

prevalence of large collisions over other sources of realism, which

we leave for future work. Additionally, even though we demon-

strated the benefits of our method in both stationary (dancing) and
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non-stationary (walking) situations, future evaluations would

still be necessary to identify the specific differences related

to other types of situations. For instance, it is possible that

the results might not generalize as well in other types of

walking crowds, for instance where characters come simulta-

neously from multiple directions. However, we believe that

our method should generalize in such scenarios up to some

extent and, more importantly, it paves the path to future re-

search directions that are nowadays little explored due to

the lack of efficient means for handling physical contact in

these scenarios.

A final question left for future work is the possible coupling

between different animation layers. We tested our method in a

classical way where the navigation stage informs the characters’

body animation stage, then proposed a novel additional step to

finally solve residual collisions. We can easily imagine that the

information we get about overlapping volumes could inform the

former layers, for instance, to improve the navigation layer (navi-

gation policy or parameters) or the body animation layer. This can

be done, for example, in a reinforcement learning approach where

the amount of interpenetration we calculate could be used as a

metric to build a reward function. More generally, we facilitate the

simulation of more complex behaviors in crowds: we lower the

required quality of the animation resulting from the simulation

of complex behaviors by letting our method improve its physical

accuracy afterward.

6 Conclusion

We introduced a method for solving collisions in existing dense

3D crowd animations. We take a physics-based approach: inter-

secting volumes repulse one another to resolve overlapping parts,

and body limbs are disentangled but left in contact to minimize the

change with respect to the original motions. Beyond this technical

contribution, our perceptual results contribute to the understand-

ing of the perception of collisions in crowd animations and provide

guidance for the application of our method.

Our results highlight a number of interesting properties of our

method. Section 4.2, as well as the supplementary video, show that

in different situations like a walking or dancing crowd, the method

performs efficiently. Our approach is general not only because it

can handle different situations, but also because it can consider an-

imations generated in different ways: it acts as an additional mo-

tion editing layer that can be put last in any animation pipeline.

In addition, the formulation of the solver coupled with the SMPL

parametric body model makes the method ready for a large variety

of characters. The method is fast and can handle dozens of char-

acters in real-time. Also, Section 4.4 demonstrates the relevance

of our method to significantly increase the visual quality of crowd

animations. In a range from sparse to dense crowds, with few or

many collisions, with little or large interpenetration volumes, the

effect of the method on the visual quality of animations as well as

on the realism of the behaviors of the characters is undeniable.

Our results also explore the limitations of the method, as the mo-

tion editing required to solve collisions can violate other physical

rules or the plausibility of characters’ behaviors. This is useful for

us to sketch some directions for future work. First, we would like to

explore new terms for the physically-driven animation approach

proposed in Section 3.2, for instance, to avoid introducing viola-

tions of gravity or foot-sliding artifacts. Second, and equally im-

portant, we would like to explore virtual reality-based applications

for our work. For instance, previous attempts to immerse people

in dense crowds [Berton et al. 2020] used haptic feedback to limit

the volume of collisions between a user and some moving char-

acters. Users were made aware of collisions, and tended to limit

them, however, since collisions were not propagated onto virtual

characters they seemed to be unresponsive to contacts. The lack of

methods like ours to solve such a problem was underlined by the

authors, and given that our method runs in real-time we believe

that it could be valuable for immersion in such virtual crowds. A

final direction for future work would be to use the method in the

context of a Reinforcement Learning approach. Information about

overlapping volumes or the inability to correct motions could be

used as a metric to design a reward function. This could be used to

learn navigation and animation policies to generate high-density

crowds, with plausible behaviors involving contacts between char-

acters, which is clearly still an open challenge. Finally, we believe

that sharing implementations of such methods is particularly im-

portant for our community, and will make our code available for

the community upon acceptance, to be able to explore other appli-

cations or future research directions.
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